

collective.jsonmigrator’s documentation!

The purpose of the collective.jsonmigrator package is to provide a set of
blueprints that help you to migrate content into Plone [http://plone.org]. (blueprint is
an extension to collective.transmogrifier [http://pypi.python.org/pypi/collective.transmogrifier]).

It provides a list of blueprints built around
collective.jsonmigrator.jsonsource
with the purpose of providing flexible infrastructure to do migrations in Plone.

And just incase you forgot, migration is a bitch… so have fun :P

	jsonsource

	skipitems

	partialcommit

	statistics

	workflowhistory

	mimetype

	properties

	permission_mapping

	owner

	ac_local_roles

	datafields

collective.jsonmigrator.jsonsource

Read JSON files and insert them into transmogrifier pipeline.

Parameters

	path (required)

	Path to directory containing JSON files (look in example below).

Also possible to specify in some.package:path/to/json/directory way.

Example

Configuration:

[transmogrifier]
pipeline =
 source

[source]
blueprint = collective.jsonmigrator.jsonsource
path = some.package:/path/to/json/dir

JSON files structure:

some.package:/path/to/json/dir
 |-> 0/
 |-> 1.json
 |-> 2.json
 ...
 |-> 999.json
 |-> 1/
 |-> 1000.json
 |-> 1001.json
 ...

JSON file:

{
 "_path": "/Plone/front-page",
 "_type": "Document",
 ...
}

collective.jsonmigrator.skipitems

Skip first N item in pipeline.

Development blueprint. Useful when you are processing big data pipelines and
you know that the first N items are already migrated.

Parameters

	first (required)

	define number of items from the beginning of data pipeline to skip.

Example

Configuration:

[transmogrifier]
pipeline =
 source
 skipitems

...

[skipitems]
blueprint = collective.jsonmigrator.skipitems
first = 10000

collective.jsonmigrator.partialcommit

Used to commit after some items have been processed.

Parameters

	every (default

	100):
Define number of items after which commit (writing to ZODB) will happen.

Example

Configuration:

[transmogrifier]
pipeline =
 source
 commit

...

[commit]
blueprint = collective.jsonmigrator.partialcommit
every = 500

collective.jsonmigrator.statistics

	TODO

	need to fix statistic blueprint so it doesn’t depend on other blueprints
to report and add statistic data.

Also reporting should not only be written to stdout.

Parameters

Example

collective.jsonmigrator.workflowhistory

Update the workflow history of an object.

Parameters

No parameters.

Expected data in pipeline:

	_path: path to object on which we want to change workflow history.

	_workflow_history: workflow history to be applied to object resolved above.

Example

Configuration:

[transmogrifier]
pipeline =
 source
 workflowhistory

...

[workflowhistory]
blueprint = collective.jsonmigrator.workflowhistory

Data in pipeline:

{
 "_path": "/Plone/index_html",
 "_workflow_history": {
 "plone_workflow": [
 {
 "action": null,
 "review_state": "visible",
 "comments": "",
 "actor": "admin",
 "time": "2010/09/15 02:19:57.932 GMT+2"
 }
]
 },
}

collective.jsonmigrator.mimetype

Sometimes we need to fix/change the mimetype of migrated objects.

Parameters

No parameters.

Expected data in pipeline:

	_path: path to object on which we want to change mimetype.

	_content_type: mimetype to be applied to object resolved above.

Example

Configuration:

[transmogrifier]
pipeline =
 source
 mimetype

...

[mimetype]
blueprint = collective.jsonmigrator.mimetype

Data in pipeline:

{
 "_path": "/Plone/index_html",
 "_content_type": "text/html",
}

collective.jsonmigrator.properties

Update properties of an object.

Configuration options

No specific blueprint parameters.

Expected data structure in pipeline:

	_path: path to object on which we want to change properties.

	_properties: properties to be applied to object resolved above.

properties passed in this data field (as shown in example) is a list of
3-item lists.:

[
 [
 <property-name>,
 <property-value>,
 <property-type>
],
 [
 <property2-name>,
 <property2-value>,
 <property2-type>
],
 ...
]

<property-type> is set of types which you can select through the
ZMI when you edit/add a property.

Example

Configuration:

[transmogrifier]
pipeline =
 source
 properties

...

[properties]
blueprint = collective.jsonmigrator.properties

Data in pipeline:

{
 "_path": "/Plone/index_html",
 "_properties": [
 [
 "title",
 "Welcome to Plone",
 "string"
]
],
}

collective.jsonmigrator.permission_mapping

Update permissions of an object.

Parameters

No parameters.

Expected data in pipeline:

	_path: path to object on which we want to change permissions.

	_permission_mapping: permissions to be applied to object resolved above.

Example

Configuration:

[transmogrifier]
pipeline =
 source
 permission_mapping

...

[mimetype]
blueprint = collective.jsonmigrator.permission_mapping

Data in pipeline:

{
 "_path": "/Plone/index_html",
 "_permission_mapping": {
 "Modify portal content": {
 "acquire": false,
 "roles": [
 "Manager",
 "Owner"
]
 },
 "Access contents information": {
 "acquire": true,
 "roles": [
 "Anonymous",
 "Manager",
 "Reviewer"
]
 },
 "View": {
 "acquire": true,
 "roles": [
 "Anonymous",
 "Manager",
 "Reviewer"
]
 }
 },
}

collective.jsonmigrator.owner

Update owner of an object.

Parameters

No parameters.

Expected data in pipeline:

	_path: path to object on which we want to change properties.

	_owner: properties to be applied to object resolved above.

Example

Configuration:

[transmogrifier]
pipeline =
 source
 owner

...

[owner]
blueprint = collective.jsonmigrator.owner

Data in pipeline:

{
 "_path": "/Plone/index_html",
 "_owner": [
 1,
 "admin"
],
}

collective.jsonmigrator.local_roles

Update local roles of an object.

Parameters

No parameters.

	_path: path to object on which we want to change local roles.

	_ac_local_roles: local roles to be applied to object resolved above.

Example

Configuration:

[transmogrifier]
pipeline =
 source
 local_roles

...

[local_roles]
blueprint = collective.jsonmigrator.local_roles

Data in pipeline:

{
 "_path": "/Plone/index_html",
 "_ac_local_roles": {
 "admin": [
 "Owner"
]
 },
}

collective.jsonmigrator.datafields

Update data/blob fields of an object.

	TODO

	missing base path (maybe even passed somehow from source blueprint)

	TODO

	only update if needed

Configuration options

No specific blueprint parameters.

Expected data structure in pipeline:

	_path: path to object on which we want to change local roles.

	datafield<field>: field which needs to store data

Example

This example will try to store content of 0/1.json-file-1 into the
attachment field of the /Plone/index_html object.

Configuration:

[transmogrifier]
pipeline =
 source
 datafields

...

[datafields]
blueprint = collective.jsonmigrator.datafields

Data in pipeline:

{
 "_path": "/Plone/index_html",
 "_datafield_attachment": "0/1.json-file-1",
}

Index

plone2.0_export.py

Export data from an old plone site.

Installation

	Create an external method in your plone site.

	Copy collective.jsonmigrator/export_scripts/plone2.0_export.pt in INSTANCE/Extensions directory

	Connect to ZMI

	Add an External Method, and fill out the form with

id = your_id
module name = plone_2.0export
method = export_plone20

	Create an jsonmigrator.ini in order to configure export process.

Syntax of configuration

Options

	In DEFAULT section

	HOMEDIR => where we create json file. This directory must exists !! Each time that export process is invoked, an new folder is created . In each folder created , every 1000 objects created, script create an new folder. The directory struture look like that:

HOMEDIR
 |_ <id_object>_<date_export>
 |_ 0
 |_ 1.json
 |_ 2.json
 |_ ...
 |_ 999.json
 |_ 1
 |_ 1000.json
 |_ 1001.json
 |_ ...
 |_ 1999.json

You can have also file name loke xxx.json-file-x . This is binary file of exported content.

	CLASSNAME_TO_SKIP_LAUD => This is a list of classname. Object of this classname where are skip by the export process

	CLASSNAME_TO_SKIP => This is a list of classname. Object of this classname where are skip by the export process

	ID_TO_SKIP => This is a list of id object . Object wich id is equal to an member of this list is skipping of the process.

	NON_FOLDERISH_CLASSNAME => This is a list of classname. Object of this classname are considered as non folderish content.

	JUST_TREAT_WAPPER => If true CLASSNAME_TO_SKIP_LAUD and CLASSNAME_TO_SKIP have no effect. Just object that are mapping in CLASSNAME_TO_WAPPER_MAP are treated

	MAX_CACHE_DB => a int number that indicate when the process purge the zodb cache (avoid memory error)

	In CLASSNAME_TO_WAPPER_MAP

	ClassName=Wrapper => you configure the export wrapper use for object of ClassName

Example

[DEFAULT]
HOMEDIR=c:\dt\plone2.1\export
JUST_TREAT_WAPPER=True
NON_FOLDERISH_CLASSNAME=DPLDTArticle
 DPLDTIssue
 DPLDTPerformance
 DPLDTTraining
MAX_CACHE_DB=250

[CLASSNAME_TO_WAPPER_MAP]
LargePloneFolder=BaseWrapper
Folder=BaseWrapper
PloneSite=BaseWrapper
PloneFolder=BaseWrapper
Document=DocumentWrapper
File=FileWrapper
YourSpecificContentType=ArchetypesWrapper

Existing Wrapper

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 collective.jsonmigrator’s documentation!

 		
 jsonsource

 		
 skipitems

 		
 partialcommit

 		
 statistics

 		
 workflowhistory

 		
 mimetype

 		
 properties

 		
 permission_mapping

 		
 owner

 		
 ac_local_roles

 		
 datafields

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

